1 proprieta

commutativa (¢) = f(a,b) = f(b,a)
associativa (a) = f(f(a,b),c) = f(a, f(b,¢)) = f(a,b,c)

2 insiemi

s € S appartenenza
s ¢ S non appartenenza
() insieme vuoto
B C A sottoinsieme
VA fpCA
A=B =— ACBABCA
BCA = BCAAB=#A
ANB={zlx € ANz € B}
N=ca
VA AnD=10
188
Ay N Az A8 =[] A
i=1

AUB={zlx € AVz € B}

U=c,a
AUA=A
AUp=A

(ANB)UC =(AUC)N(BUC)
AN(BUC)=(ANB)U(ANCQO)

U = universo

complemento di A A° = {z € Ulx ¢ A}
(AN B)¢ = A°UBC®
(AUB)® = A N B¢

B\A={z € Blz ¢ A}

P(A) = {BIB C A}

AxB = {(a,b)la € A,b € B}
ArxAzx..xA, = {(a1,az,...,an)|a1 € Ay az € Az, ...;ap, € Ay}
NxNxN = N?

X=a

IxA=10
(A1 n AQ)XB = (A1 XB) n (AQXB)
(A1 U AQ)XB = (A1 XB) U (AQXB)



3 relazioni

ApB C AxB
apb = (a,b) C p
B = A = relazione definita su A
p € una relazione di equivalenza se definita su A e
1)Va€ A apa
2)apb = bpa
3)apb A bpc = apc
se p € una relazione di equivalenza apb si dice a ¢ equivalente a b
sia p una relazione di equivalenza su A,
la classe di equivalenza modulo p di un a € A ¢ 'insieme [a] = {b € A|bpa}
[a] = [b] <= apb
[a] # [b] = [a]N[b] =0
p ¢ una relazione di ordine(parziale) su A se
1)Va € A apa
2)apbAbpa = a =10
3)apb A bpc = apc
parziale significa che non tutti gli elementi sono confrontabili,

se ogni 2 elementi sono confrontabili allora € di ordine totale

4 massimo,minimo,massimale,minimale

in generale una relazione di ordine si indica con <
sia < una relazione di ordine su un insieme A. un elemento a € A ¢ detto

1. massimo: se ¢ confrontabile con ogni elemento di A e risulta che y <a Vye A
2. massimo: se ¢ confrontabile con ogni elemento di A e risulta che a <y Vye A
3. massimale: Vy € AAy #afla <y

4. minimale: Vy € AAy #afly <a

5 funzioni

la relazione p € detta funzione e si indica di solito con f se Vx € A,3ly € B, (x,y) € f
fx)=y,x € A,ye B,f: A— B A & dominio B ¢ codominio

immagine di f: Im(f) ={y € B|3z € A, f(z) =y}

controimmagine di f: f~'(y) = {z € A|f(x) =y}

una funzione f: A — B ¢ detta iniettiva se Vy, 22 € A, x4 # x2, f(x1) # f(22)

una funzione f : A — B ¢ detta suriettiva se Vy € B,3x € A, f(z) =y

biettiva = iniettiva A suriettiva

quando f: A — B ¢ biettiva si puo costruire la funzione inversa g : B — A

(go filx)=o VzeA
(fog)ly)=y VyeB

siano f: A — B e g: B — C definiamo la funzione composizione (g o f): A — C
come (g 0 f)(x) = g(f(x))

composizione = not c, a

insieme ordinato = esiste una relazione di ordine totale

campo = ha due operazioni dove ogno elemento ha un opposto e ogni elemento non nullo &
invertibile rispetto alla moltiplicazione



6 equazioni
di primo grado = lineare
fratte = la x & in qualche frazione, si risolvono con mcm

disequazioni = soluzioni poi parabola

disequazioni fratte = il prodotto/quoziente ¢ positivo se e solo se entrambi sono positivi o negativi
(risolvi N e D e poi tabella li strana)

7 sistemi

equazione,

equazionesz

verificato quando tutte vere, roba con rigette

8 radice quadrata

Ve e Rz >8.y>8 3y > =2

f(x) =g(x)
)

f(z)>m

g(z) >®

f(z) = ¢ (x)

(campo di esistenza)

vV f(z) = g(z)
7
f(x) = g*(x)

V f(x) > g(x)
)
f(z)>®

OET:
g(x) =@ U{
@) > 2@y 9@ <P

(campo di esistenza)

V() > g(x)
!
f(z)>®

(@) >0
g(z) > @ U{
f@) > @) W <E

(campo di esistenza)



f(z) < g(x)
7

flz) > @
g(z) > @
f(x) < ¢ (x)

(campo di esistenza)

flz) < g(x)
!

f(z)>@
g(r) >8
f(z) < ¢ (x)

(campo di esistenza)

f@) < g’ (@)

9 logaritmo
Ya,a >8,a #1,y>8,3z,a* =y z=1log,y
e = numero di nepero, reale ma non razionale, log, = In

a8 =z 1 >n
logea® = x,Vx € R

1. log,(zy) = log,(z) + log,(v)

[\)

. loga(%) = log, (z) — log,(v)

w

. log,(z%) = blog,(z),b € R

lo T
. logy (z) = 243

>~

[f(@)] = |g(x)| < f(z) = g(x) V f(z) = —g(z)



f(x)>8 f(z)>8
{f(ar) =g(x) U {—f(x) =g(x)

(campo di esistenza)

notazione: a|lb< Je,b=c-a
a,b € Z,a,b#8,IMCD(a,b) =d,d = ax + by + identita di bezout
teorema fondamentale dell’aritmetica:

vneNan#a713P:{(pBamB)a(p‘17m1)'~'(pn7mn)}a H pm =n

(p,m)EP —
Vi€ Zz# 1,813 = {(pa,ma), (1) (pumn)}, T P =2
(p,m)eP

— D={a"]}

(usando la definizione delle coppie di Kuratowski)

Np=N{z} {2, 9}} = {2} 0 {2, v} = {2}
Up=U{{z} {2, 0}} = {2} Uiz, v} = {20}

. {mp)—ump—U{x}—x

p=(z,y) = {{z}, {z,9}} = {

m(p) =U{eeUprIUp#Np—a¢p} =
=J{ae{zy} [ {zy} #{a} mag {a}} = v} =v

MCD(a,b) = H{.’L‘n|’l} = T4 (P1) ANx =m (Pz),n = min{wz(B ),’/Tz(PQ)},P] g PQ,PQ Q Pb}
MCM(a,b) =[[{z"|z =m(P)Va=mP:),
n = max{mz(m)lm C {P|P = P,z = m (P)}U
{P|IP =P,z =m(P)}}, P CP,,P: C B}
MCD(a,b) - MCM(a,b) =a-b
mcd :: Int -> Int -> Int
mcd a b
| r1 == 0 =D
| otherwise = mcd b ril
where rl1 = a "mod™ b

se MCD(a,b) = 1 si dice che a, b sono coprimi tra loro

equazione diofantee Sz + 3y =16, determinare tutte le soluzioni (x, y) intere dell’equazione

=16
basta risolvere Su+3v = 1, infatti dopo multiplico per 16, 5(16u) + 3(16v) = 16 ’ 155 >
y p—

5u+3v ¢ un’identita di bezout, si puo realizzare? si, perché (5, 3) = 1
S=3-1-42n =2
=241, =1
2=1-248,stop

MCD(5,3) =rp =1

bezout:
1=3-2-1
=3-(GB-31)1
=3-5-14+3-1
=3-2-5-1
u=—1
v=2

z=16u = —16
y=16v =32
tutte le soluzioni sono (x —3h,y +5h), in quanto S(x —3h) +3(y +5h) =5z —15 + 3y +15 =
Sz + 3y =16
quindi le soluzioni sono (z,y) = (—16 —3h,32 + Sh)Vh € Z
ax+by=c ha solozioni intere <= (a,b)|c

una soluzione di 5x+3y=16 e



su Z definiamo una relazione ap,,b <= a=b mod n
le classi di equivalenza sono [a), = {b € Z|ap,n} linsieme quoziente & l'insieme delle classi di
equivalenza, lo si indica con Z,, = {[m],|vm € N,&@ <m < n}

congruente in Z a é congruente a bmodulonsen € NNn>1,a,b € Z,a mod n =56 mod n =
b—a=kn,n|(a—0)
la relazione di congruenza mod n € una relazione di equivalenza qualsiasi sia n € Ng

riflessiva : Va € Z,a 2 a mod n(n|(a — a) = n|@)
simmetrica : Va,b € Z,a = b modn = b= a mod n(n|(b—a) =n|—(a—">))
Va,b,c€ Z,a=b modnAb=c modn — a=c modn

¢ iva -
ransitiva (n|(b—a)An(c—b) = n|(b—a+c—0b)=n|(c—a)

classi di equivalenza quante sono? quante n

[B]m [1 ]7“ [E]TH ) [n —1 ]n

@], ={a € Zla =8B mod n}

Ya,b € Z,[a], + [b]n = [a + b,

Va,b € Z,[a]n - [bln = [a - b]n

[a] invertibile in Z,, <= 3J[z],[a]-[z] = 1] < [a-2] =[1] < azr =1 modn <
n|(ax —1) <= ax —1=kn,k€Z < ar—kn=1,k€Z < MCD(a,n) =1

Z— L ={[m],lm e N,8 <m < n}

ax 2 b mod n,d = (a.n) ammette una soluzione <= d|b, in caso za & una soluzione, tutte le
altre sono z = zg + Jk,k € Z

siano n4,...,n, € N> @
siano by, ...,b. € Z
allora

Tz = by mod ny
1. il sistema

r = b, mod n,
2. tutte le soluzioni sono della forma ¢ + knq - nz - ... - n,., cioé la soluzione [c],,.. . .n,

algoritmo: risolvo indipendetemente le congruenze, per i=1,...,r

.
1. lez =1 mod TLZ',NZ' = H u%
j=1,j#i
esempio:
r=3mods, by =3,ny =8, Nyyy =1modny = 3 - 21y; = 1mods = y; = totymods
= —1mod3, b: = —1,n2 =3, N2y = 1modnz = & - 21y £ 1mod3 = ¥ = totzmod3

T =2 2Tmod21,by =27, nz =21, Nayz = 1modnz = 8 - Syz £ 1mod21 = y; = totzmod2

2. pongo ¢ = > by N;

=1

r =b mod ny
teorema cinese del resto generalizzato il sistema A« : ha soluzione <=

z =b, mod n,
Vi,j <r,MCD(ny,n;)|(bs — b;), una soluzione c e le altre nella forma ¢+ kMCM (n4, ..., n;)

funzione di eulero se A & un insieme finito, il simbolo #A indica il numeri di elementi di A
VneN,n>1,6(n) =#{a €ZB <a<mn,(a,n) =1} = #{classi invertibili di Z,}
Vn € N,n >1,n primo, (a,n) =1 = a®™ =1 mod n

eulero:: Int -> Int
eulero n
| isPrimo n = n-1
| isPrimo (h “sqrt” p) = (p “pow™ h) - (p “pow™ (h-1))
| otherwise = map eulero $ toFattoriPrimi n
where h >= 1



piccolo teorema di fermat
a €Z,p>8,pprimo = a? Za mod p
(a,p) =1 = a?' =1 mod p

10 basi
Vn >2,Va € Nya > 8,314, = {B € R*|#B < oo, I1 rnh =
r=m (p),n=m2(p),pCB
basechange :: Int -> Int -> [Int]
basechange a n = _basechange a n n
_basechange :: Int -> Int -> Int -> [Int]
_basechange a n e
| e ==0 = [a "mod” n]
| otherwise = a "mod™ n : _basechange (a “div™ n) n (e - 1)

11 trigonometria

circonferenza raggio 1

2 T
-1 - ]
P= (coszx
sin x @ 1y sinx
> a8 cosz |
9 | |
= \ |
-2 — 5} 1 2

cos? x 4+ sin® =1 periodiche in periodo 27

sin(z + 2m) = sinx

cos(z + 2m) = cosx

sin—x = —sinx
COS — = COS T

sin(m — ) =sinz

cos(m —x) = —cosx
sin(r + x) = —sinx
cos(m + ) = —cosx

sin(2z) = Zsinz cosx

sinx
cos T

tany =1,tan T = ?,tam
periodica di periodo w

tanx =

I
o

Wy

tan(z 4+ m) = tanz

cos T
sin

cot = cotan =
186° =7



sind =@, cosd =1,tan@ =@

. 7 T
s1n§:1,cosf:l3,tanf:@

g 2
sinm =#8,cosm = —1,tanm =H
.3 3T 3T
sin — = —1,cos — =@, tan — = )
b e

cos(z +y) = cosx cosy — sinzsiny
(

cos(x —y) = coszcosy +sinxsiny

sin(x + y) = sinxz cosy + cosx siny
sin(z —y) = sinzcosy — coszsiny

funzioni trigonometriche

| | | | | | |
—6.28-471-314157 8 157 314 471 628
T

DISEQUAZIONI:

cosxr > —
2

2kw—§<x<§+2kz7r
12 triangoli rettangoli
triangolo retangolo

b=c-sin«

«
a = C-CoOsx

13 immaginari

Re(x) = parte reale Im(y) = parte immaginaria
se z = x + iy il coniugato € z = x — 1y
due complessi sono uguali se hanno stesso modulo e stesso argomento a meno di multipli di 27

T4 = Xz
Y1 = Yz —|— 2k‘7r
operazioni sui complessi:
somma (z +iy) + (2’ +iy) =z + 2" +i(y +v)
prodotto (z +iy) - (2’ +iy') = xa’ +ixy’ +iyax’ +ifyy =z’ —yy' +i(xy + yz')

modulo di z =z + iy & |z| = /2% + 42

|2]? = 2z

2 +22 251 +§2




2| > @

z2=8 < |z|=8
21 - 22| = [z1] - |22
2| = ||

|21 + 22| < |21 | + |22]

forma trigonometrica

z=x+1y
p
Y Yy
T
p = |z
¢ = angolo formato dal segmento e asse x
-z
{cos ¢ = b
ind =Y
sin ¢ = o

z=x+1iy =pcos¢+i(psingd) = p(cos ¢ + isin @)
p = modulo di z
¢ = argomento di z
altra formula per ¢
arctan% se x > @ e y qualsiasi
arctan £ 4 7 sex<Bey>8
¢ = {arctan £ + 7 serx<Bey<B ,¢€E(—mm]
Z sex=Hey>8
-% ser=Hey<H

DE MOIVRE
2 =P (cos ¢y +isingy)
2 = pp(cos ¢z + isin¢z)
21+ Z2 = Py D2 (COs risin ¢y )(cos paisings) =
= Dy D2 (COS ¢ COS oz + 1 COS Py Sin P + i 5N Py COS P + i* sin Py sin ¢z)
= Dy P2 (COS 1 €OS Pz — sin ¢y sin ¢z + i(cos ¢y sin ¢z + sin ¢y cos Pz ))
= Py pz(cos(dr + ¢2) +isin(¢r + ¢2))

generalizzando

2 -2 e Zp = PqP2--Pr(cos(d1 + G2 + ... + &) +isin(Pr + d2 + ... + Pp))
2" =p"(cos(n - @) + isin(n - ¢))

DE MOIVRE per i quozienti

z =Py (cos ¢y +isingy)
2z = pa(Cos ¢z + isin ¢z)

A D1 cos(¢y — da) + isin(dr — ¢2))

2z Pz

radici n-esime

Vw=z2"=w

sia w = r(cos¢ +ising) # &

w ammette esattamente n radici n-esime



queste sono

k={zlx >8 Az <n/rzeN}

2E = r%(cosqﬁk + i sin ¢y)
+ 2k7
b = g+ 2kn
n

C ¢ algebricamente chiuso, ogni equazione polinomiale in C: a,2" + ap_12"" + ... + 12+ ag =
5] g, A1, -y Gy € C

ha esattamente n radici (=soluzioni) contate con molteplicita

R non & algebricamente chuso, infatti % +1 = & non ha soluzioni in R

MOLTIPLICAZIONE PER i

z =p(cos ¢ + isin @)

vogliamo capire modulo e argomento di iz

liz| =] - |z] =1-p=p

argomenti di iz

iz = pi(cos ¢ + isin¢) =
= p(icos ¢ + i“ sin ¢) =
=p(—sing + icos¢) =

=p (cos (64+3) +isin (64 7))

l'argomento di iz ¢ ¢ + 2

14 relazione di equivalenza

relazioni binarie

x ={a,b,c,d}
r=N
r=C

R e 2* = {(z,y)|z,y € X}
R = {(aa a)}H(bv C)’ (avc)}'“

relazione di eguaglianza

1.riflessive Vz € X, (z,z) € R|R(x,z)|zRx
2.simmetriche Vz,y € X, (z,y) € R = (y,z) € R
3.transitiva Vz,y,z € X, (z,y) € RA(y,2) € R = (z,2) € R

principio di induzione (I* forma) ng € N, P(ng) = Vn > nag,n € N,P(n+1)
principio di induzione (II* forma) ng,n,k € N, P(ng) AVk,n >k > ng = P(n+1) = Vn >
ng, P(n)

15 gruppi
un gruppo (G, x) ¢ un insieme G dotato di una operazione binaria

*:GxG — G
(a,b) > axb

che verifica le seguenti proprieta
(a) * ¢ associativa Va,b,c € G,(a*b)*xc=ax (bx*c)
(b) Je € G detto elemento neutro rispetto all’operazione *: Va € G,exa=a=ax*xe=a

(¢) Va € G,3a™" € G detto elemento inverso tale che axa™' =e=0a""xa

10



se inoltre vale che Va,b € G,a b = b x a, si diche che (G,*) & un gruppo abeliano
dle € (G,*),YVa € Giaxe=a=¢ex*a

Jla™ € (G,x),Va € Gyaxa ' =e=a"xa

Va,b € (G,*),(a-b)""' =b"".a™"

Ya € G, (a‘1)_1 =a

Vg € (G,%),Yi € Z
gxgxgx..%xg 1> 8

gd=<e i =8
g ' xg'x.xg" i<am@

ordine 7 di g € G & il pitt piccolo intero positivo r tale che g" = e. E indicato con o(g). Se Pr
si dice che g ha ordine infinito

un gruppo e detto finito di ordine R se G ha un numero finito di elementi uguale a R

si indica con |G| il numero di elementi di G (che ¢ anche il suo ordine se & finito)

Lagrange Vg€ G,|G| <00 = 0(9)||G|
un gruppo G & detto ciclico se 3g € G,Va € G,Ji € Z,a' = g,° = e = G =<g>

1. |Gl=1 = G=/{e}

2. |G| =2,G = {a,a® = e} =< a >, & un gruppo ciclico
*

€ a
e e a
a a €
3. |G| =3, —{99 g =e} =< g >, ciclico
x elgld
e e | g |g*
919 g | e
Floglely

4. |G| = 4, due strutture distinte di gruppo:

(a) il gruppo ciclico: G = {g,9%, ¢*,e = ¢g*} =< g >
2

x lelg ||y
elelglg |y
919 |g e
919 |glely
Fladlelgls
(b) il gruppo di klein: G = {e,a,b,c =a*xb="bxa}
x|elal|lb]|ec
elelal|lbdb]|c
alal|blcl|e
blblc|lela
clclelale

5. |G| =5,G =1{9,9°, 6%, g%, e = g°} =< g >, ciclico
6. |G| =& molte strutture

se |G| = p primo allora G ¢ ciclico
se |G| <5 allora G & abeliano. ci sono gruppi non abeliani a partire da ordine 6
ogni gruppo ciclico & abeliano

gruppi di permutazione /gruppo simmetrico S,
{1,2,3,4,..ny=2— {1,2,2,4, ...,n}
funzioni bigettive
» = {funzioni bigettive da {1,...,n} — {1,...,n}}
[Sn| = n!
operazione: composizione fog
zSaela
x—g(x) = fg(x)) == fog(x)
neutro: idog(x) = ( )
inverso: fof™" = f~of =id (f(z) =y, f'(y) = 2)

11



Permutazioni "facili”: scambi: 12 : g) (1 2): stiamo scambando solo 1 con 2
... (1 2 3 4 5
Cicli: (2 3 1 4 5) (zz)E) =231) =#H)E)(312)

(a b)* = (a b)o(a b) = id

o:(aq...an)

anelli strutture algebriche con 2 operazioni
un anello (R, +,-) ¢ un insieme R dotato di due operazioni binarie:

+:RxR— R
-t RxR— R
tali che
1. (a) + ¢ associativa: (a+b)+c=a+ (b+c¢)

(a)
(b)
(¢) Ya € R,3— a € R detto elemento opposto tale che: a + (—a) =8 = (—a) +a
(d) + & commutativa: Va,b € R,a+b=b+a

esiste l’elemento neutro B € R rispetto alla +: Va € R,a+8B=a=8+a

2. - & associativa: Va,b,c€ R,a-(b-c)=(a-b)-c
3. valgono le leggi distributive:

a-(b+c)=a-b+a-c
(a+b)-c=a-c+b-c

(R, 4+) & un gruppo abeliano

se vale che - & commutativo si dice che (R, +,+) & commutativo

se vale che esiste I’elemento neutro 1 € R rispetto al prodotto, si dice che I'anello ¢ unitario
un campo € un anello commutativo unitario in cui ogni elemento diverso da 0 € invertibile

anello dei polinomi a coefficienti in A : A[z]
sia A = (A +,+) un anello

{E}U{Zaxl\nEN a; € A}

grado d1 un polinomio:
grado(8) = —1

grado(z ayx' = max{ilay #8}
=8

monomio: a;x"
n

n n
operazioni: +: & la classica somma termine a termine Y a;z* + Y. b;z' = > (a; + b;)z*
i=8 =8 i=a

n n .
prodotti: stesso discorso Y a;x Z bzt = Z( a; - b;)a’

=8
teorema ruffini: se P(z) € A[z], A campo a E A P(a) =8 (aéradice di P(x)) < (z—a)|P(x)

matrice fissiamo A anello, una matrice di tipo (m,n), con m,n € N;m >1 <n ¢ una tabella M
di mxn elementi di A

71
T 19 G4z ... Qin
= (01 |\Cn) = Dl ai ,ai;,% = riga, j = colonna
Ama Amz .. Amn
T'm

M = (i 3)i<m,j<n
a; ; sono i coefficienti/entrate di M
(m,n) ¢ la dimensione della matrice, se M & quadrata (cioé m = n) si dice anche che & quadrata
di dim. n
Msn(A) = My, n(A) :=l'insieme delle matrici di dimensione (m,n) a coefficienti in A
somma: mq # mz V Ny # nz non si somma
19 ... Qi b1 ... bin Qg + by oarp + by
my ::mz/\n'l == Nz, . '.. E + . '.- E =

Amd v G bt e b Am1 + bma o G + byn

1. A+ B=B+A

192



2. A+ (B+C)=(A+B)+C

8.8
3. elemento neutro® = | :-. :
B .8
—4q ... — Qqp
4. oppostodi A e —A =
Oyt oo — A

operazione di trasposta: “rifletti” A = (a;;), AT = (at;;),a = at
(A7) = A
I’operazione di transposizione ¢ idempotente
A € Maya(K), AT € Mz, (K)
A€ Myym(K), AT € Myyn(K)
A & simmetrica se AT = A
prodotto esterno: Vk € K,VA € My (K), A = (a;5), k- A = (ka; ;)
by .
prodotto interno: v = (ay...an),w = | : |, il prodotto vettore v-w = 3 a;b; € K

b i=1
prodotto tra matrici: A € Myxn(K), A € Myxn(K),C € Mg, cij = D Qirbyj
r=1
1. (A+B)-C=AC+ BC
A-(C+ D)= AC + AD
. Vk e KA(kB) = (kA)B = kAB

[N)

3. (AB)C = A(BC) := ABC
1 6.8
4. elemento neutro nel caso quadrato: I, = E‘
0.1
5. (AB)T = BT AT

(=2}

. (A+B)T = AT + BT

matrici invertibili M (R, n) = {matrici quadrate nxn a coefficienti in R}
(M(R,n),+,-) anello non commutativo, & unitario, esiste ’elemento neutro rispetto al prodotto
1 5]
che ¢ la matrice identita I = e MR,n),YAe M(R),A- I=A=1T-A
5] 1
una matrice quadrata NxN ¢ invertibile se esiste una matrice A~ quadrata NxN tale che
A A"V =Te A" A=1
non tutte le matrici non nulle sono invertibili

matrici non quadrate non sono invertibili
data A voglio trovare B tale che A- B = 1.

B = (by|ba]...|bw)
1 5} 5}
5} 1 5}
AB=I e Ab=|. 1, Ab=]|.|,. 40 =
5] 5] 1
— (AI) dall’alto e dal basso (IB)

gauss-jordan

con B = A™" matrice inversa
A di tipo NxN invertibile <= rk(A) = N (ossia & massimale)

1. (AB)™" = B~'A~"
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a11 A1z ... Q1n

. . Qzq Azz ... Azn
determinanti A =

Api Gpz ... Qpn
Al= 3 sgn(o) [T io(i)

il determinante di A & lo scalare det(A) =

ocES, i=1
+1 se x ¢ pari
sgn(z) = e
—1 se x & dispari
abce
il determinante per 3x3 (regola di sarrus) A= | d e f | ,det(A) = aei+dhc+bfg—ceg—hfa—dbi
ghc

1. se B si ottiene da A scambiando due righe o colonne, allora det(B) = —det(A)
2. se A ha due righe o colonne uguali, il determinante & zero
se A ha una riga o colonna di zeri, il determinante & zero

. se B si ottiene da A moltiplicando una riga per k € R allora det(B) = k - det(A)

ou s w

. se B si ottiene da A sommano ad una riga di A un multiplo di un’altra riga, allora det(B) =

det(A)
6. matrice triangolare superiori (Vi < n,Vj > 4,a;, =8) det(A) = a110zz...0nn
A nxn ¢ invertibile <= rk(4) =n <= det(A) #8

regola di laplace A= M(R,N)
indichiamo con A4; ; la sottomatrice di A ottenuta cancellando la i-esima riga e la j-esima colonna,

allora fissato i € {1,..., N} si ha det(A) = > (—1)"a;;det(A; ;)

binet
1. det(A- B) = det(A) - det(B)
2. det(AF) = [det(A)]

3. det(A™") = de;(A)

autovettore e autovalore A € M(K,NxN),v € KNv #8 X € K,A-v =X = X&un
autovalore di A e v & un autovettore relativo all’autovalore A

polinomio caratteristico pa(t) = det(A —tI) € K[t]
gli zeri di pa(t) in K sono gli autovalori di A, e viceversa
la moleplicita algebrica di un autovalore € la molteplicita dello zero come soluzione del polinomio
M4 (A) = maxm(z — a)™|P(x)
dato A un autovalore di A definiamo 'autospazio relativo all’autovalore A:
U1

v
W=(qv= _2 eKNMAv=2v ) ={veKN|Av- =8} = {veKN|(A-\)v=2a}

Un,
la molteplicita geometrica dell’autovalore A ¢ la dimensione di V). si indica con Mg(A) =
dim(Vy), dim(Vy) >1 VA autovalore
1 <mgy(a) < mg(a)

n = ordine matrice, > mg(a) #n = matrice non diagonalizzabile
a autovalori

18688
6288
BE3E
BB G4
non tutte le matrici sono diagonali, pero in realta la magior parte sono diagonalizzabili, cioe
ammettono una forma diagonale
due matrici A, B € M (K, NxN) sono simili se esiste C matrice invertibile tale che B=C~"-A-C
una matrice ¢ diagonalizzabile se & simile ad una matrice diagonale

diagonalizzazione le matrici + semplici sono quelle diagonali
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se A ¢ diagonalizzabile la sua forma diagonale & composta dagli autovalori di A e inoltre la

matrice diagonalizzante C & composta da una base di autovettori
MA()\) =1 — MA(/\) = Mg(/\)
A diagonalizzabile <= VA autovalore, M4(\) = Mg()\)

16 sistemi di equazioni lienari

con grado max 1

equazioni lineare omogenea:
3:171 — Tz —|—5£L'3 =8

a Ty + ... +apz, = b1>

ATy + ... +apTy = E)

equazione lineare non omogenea:
33?1 — Xz —|—5.133 =7
a1 + ... + Ty = b1

. . . o . Aazq T4 —&-...—|—a2na:n :bg
sistema di equazioni lineari

ApA T4 + oo + QnTrn = b
sistema di m equazioni in n incognite, gli a; ; sono coefficienti, (b;...b,,) vettore dei termini noti.
se by = ... = b, =8 il sistema ¢ omogeneo

una soluzione del sistema ¢ una qualche (z1, ..., x,) che risolve tutte le equazioni
I
(@11, .yaqpn) |
"1“71,
—b X9
W1 T+ o Ty = by
L ap@y F ot ATy, = b2 (azt,...,azn) | -
cosa centrano le matrici? . ) s
: T
ApA T4 + oo + QT = b
T4
(am1 PERES) amn)
Tn
aq4 ... n X1 19 + ... + GpTh b1
= : = | ! | < (vettore dei termini noti)
Ay - A, Ty AyA T4 + oo + Qi by,

vettore indeterminate
[A]b] < queste sono quelle da manipolare

processo do gauss-jordan: ridurre il sistema ad un sistema a gradini equivalente
/ !/ / . N
Ay T + ATz + .o + ay, T, = by

/ / —
ooZ2 F oo + a3, Ty, = b5

ar mTm + ... +al o, =b,
sono sistemi equivalenti, cioé hanno le stesse soluzioni. il sistema a gradini & facile da risolvere,
perché si risolve per sostituzione a partire dall’'ultima equazione.
si ottengono sistemi equivalenti se opero con le seguenti operazioni, dette elementari:

1. scambiare di posto due equazioni
2. moltiplicare una equazione per uno scalare non nullo
3. sostituire una equazione con la soma di se stessa e un multipo scalare di un’alatra equazione

il rango di una matrica A ¢ il numero di pivot nella sua forma a gradini, si indica con rg(A)
oppure con 1k(A)

un sistema lineare & compatibile <= rg(A:b) = rg(A), in tal caso, il sistema possiede oo™ "

soluzioni dove n ¢ il numero di incognite, r = rg(A)

17 algebra lineare

spazio vettoriale (ancora un’altra struttura algebrica)
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uno spazio vettoriale V su un campo K & un insieme V con due operazioni:

+:VxV =V (v,w) 2 v+w
2 KxV =V (ev) = ¢V

1. (V,+) & un gruppo abeliano, in pratica: esiste un elemento neutro, si indica con 0 e detto
vettore nullo e esiste anche elemento inverso di W detto -W: W + (-W) =@

2. Ve e K,YW,U € V,e(W +U) = cW + cU

3. Ve, e KVW eV, (¢ + )W =y W 4+ eaW
4. Ve, ez e KYW €V (cre2)W = ¢ (ezW)
5VW VA -W=W

6. il vettore nullo 0 & unico
7.YWeV,e-W =8

8. VkeK k-8—8

un sottoinsieme non vuoto W di uno spazio vettoriale V sul campo K ¢ detto sottospazio vettoriale
di V se:

1. W e chiuso rispetto alla somma: Ywy,wz € W = wy +w2 € W
2. W e chiuso rispetto alla moltiplicazione per uno scalare: Vee K,iw e W = c-we W

un vettore v € V' & una combinazione lineare dei vettori vy, vz, ..., € V se ¢qvq + czvz + ... +
CmUm = v dove ¢ ...c,, sono scalari

diciamo che i vettori v;...v,, € V generano V se ogni vettore v € V e una combinazione lineare
di vy...0p, si scrive V =< vg...0p, >

dipendenza lineare, vy ...v,, € V sono vettori linearmente dipendenti se esistono scalari ¢; ...c,, € R
non tutti nulli tali che ¢y v;...c;v,, = 8. altrimenti si dicono linermente indipendenti

un vettore singolo v € V' & linearmente indipendente <= v # @

una base di V & un insieme di vettori {v;...v,} che genera V e sono linearmente indipendenti

equicardinalita delle basi le basi di uno spazio vettoriale hanno lo stesso numero di elementi.
questo numero & detto dimensione di V, si indica con dim(V')
se dim(V) =N

1. N vettori che generano V sono anche linearmente indipendenti
2. N vettori lin. indip. di V allora generano V

N vettori vy...v, € RY formano una base <= rk(vy,vz..v,) = N <= det(vy,v2...v,) # B

estrazione di una base dati vettori di V che generano esiste un loro sottoinsieme formante una
base di V (basta rimuovere i vettori dipendenti)

complemento ad una base dati vettori di V linearmente indipendenti, possiamo aggiungere altri
vettori in modo da ottenere una basei di V

sottospazi un sottoinsieme non vuoto W di uno spazio vettorieale V e detto sottospazio se:

1. W ¢ chiuso rispetto alla somma (Vwy,wz € W = wy +wz € W)

2. W & chiuso rispetto alla moltiplicazione per uno scalare (Vw € W,Vc € R = c¢-w e W)

se W C V sottospazio, allora dim(W) < dim(V), inoltre se dim(W) = dim(V') allora W =V
sottospazi generati da vettori dati vy,vz,...,v,, € V lo spazio generato da questi vettori e
definito come < vy, vz... 0 >= {101 + 202 + ... + Cmbm, €1 ...Cy, variano in R}

< V1,Vz, ...y Uy, >C V' & un sottospazio (la somma di combinazioni lineari & di nuovo una combi-
nazione lineare)

sottospazio somma e intersezione

16



somma di sottospazio

siano S C V e T C V due sottospazi di V. dim(S) = M,dim(T) = N, definiamo S+ T =
{v+wlv € S;w € T} C V in realta & un sotospazio. come si trova una base di S+T7 si parte da Bg =
{v1,...; v} base di S e By = {wy,...,w,} base di T allora S+T & generato da vy, ..., U, W, ..., Wy
dai quali estraggo una base.

dim(S + T') < dim(S) + dim(7")

intersezione
S, T sottospazi di V, SNT = {v € Viv € S,v € T} CV & un sottospazio

formula di grassman

dim(S) + dim(7") = dim(S+7T) +dim(SNT) = dim(S) +dim(7T) + dim(S+7T) = dim(SNT)

S, T CV sottospazi, se S+ T =V e SNT = {8} si dice che V=5 @& T & somma diretta di S e
T. ogni v € V si scrive in modo unico come v =vy +vz) con vy € Sewvy €T

applicazioni lineare /omomorfismi tra spazi vettoriali
siano V, W due spazi vettoriali in K, un’applicazione lineare tra Ve We f: V — W, Vv € V,Vk €

K, f(X; kivi) = 2; ki f(vi)
ker(f) = {0 € VIf(v) =8} C V

ker(f) & un sottospazio vettoriale di V'

ker = kernel

Im(f)={weW|eVflv)=w}CW

Im(f) ¢ un sottospazio vettoriale di W

sia f : V — W applicazione lineare, sia dim(V) = n allora n = dim(V) = dim(ker(f)) +
dim(Im(f))

un’applicazione lineare si dice

1. iniettiva quando la funzione & iniettiva
2. surgettiva quando la funzione & surgettiva
3. isomorfismo, quando & entrambe

siano V, W spazi vettoriali su K, sia B = {v,...,v,} base di V, siano wy, ..., w,, vettori qualsiasi
f(vr) = wy
di W, allora 3!f : V — W applicazione lineare :

f(vn).: Wn

coordinate V spazio vettoriale su R (in generale su un campo qualsiasi K), fissiamo una base
B ={vy,...,v,} do V quindi dim(V) = N
ogni vettore v € V si puo scrivere come combinazione lineare dei vettori della base in modo

unico, v = rqvy + .... + TLV, CON Ty, ..., T, € R univocamene
T4
il vettore | @ | € R™ & detto vettore delle coordinate. si indica con [v]p oppure con x
Tn

applicazione delle coordinate V con vase B,dim(V) = n definiamo l’applicazione delle
V RN
v— [v]B
¢p ¢ lineare ed un isomorfismo, quindi lavorare in V & come lavorare in RY, che & pid semplice
ogni spazio vettoriale V di dimensione N ¢ isomorfo a RY (due spazi vettoriali V e W della stessa
dimensione, diciamo N, sono isomorfi, perché entrambi isomorfi a RY)

coordinate (rispetto a B) ¢p :

matrice del cambiamento di coordinate V fissiamo due basi: B e e, B = {vy,v2,..., 0},
e={wy,.,wy}
in particolare dim (V) = n, ogni vettore v € V ammette ue vettori di coordinate: [v]p e [v]e

matrice del cambiamento di coordinate dalla base B alla base e ;Mp = | [v1]e [vz]e---[Vn]e

| |
Yo eV, [v]le = Mp - [v]B
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matrice rappresentative [ : V — W applicazione lineare, B = {vy,...,v,} base di V, e =
{wy, ..., wm } base di W
la matrice di rappresentazione di f rispetto alle basi B e in dominio e e in codominio
I
Mp(f) = | [f(v )]‘e [f(1|12)]e|[f(vn)]e
«Mp(f) = transforma le B-coordinate di v nelle e-coordinate di f(v)
Vo e V,[f(v)le = Mp(f) - [v]B

endomorfismo se W =V, f:V — V e detto endomorfismo su V'

siano B e e due basi di V abbiamo due matrici di rappresentazione di f: pMp(f) e M.(f),
eMe(f) = .Mp- BMB(f) - M,

eMp = pM;!

Mo (f) = gM;" - pMp(f) - sM, (formula di cambiamento delle matrici rappresentanti degli
endomorfismi)

le matrici rappresentanti di un endomorfismo rispetto a basi diverse sono simili

diciamo che un endomorfismo f : V — V & diagonalizzabile se siste una base B di V tale che la
matrice rappresentante g Mp(f) & diagonale

f:V — V endomorfismo e sia A una matrice rappresentante di f — det(A) #8 <— f
suriettivo <= f iniettivo

rango il rango di una matrice A & anche uguale al massimo ordine di un minore non nullo, un
minore di ordine k ¢ il determinante di una sottomatrice formata da k righe e k colonne

188 18 188
@11 a1 #8 |81 1| =8, max ordine minore non nullo & 2
B2z 022
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