
1 proprietà

commutativa (c) =⇒ f(a, b) = f(b, a)

associativa (a) =⇒ f(f(a, b), c) = f(a, f(b, c)) = f(a, b, c)

2 insiemi

s ∈ S appartenenza
s /∈ S non appartenenza
∅ insieme vuoto
B ⊆ A sottoinsieme
∀A ∅ ⊆ A

A = B =⇒ A ⊆ B ∧B ⊆ A

B ⊊ A =⇒ B ⊆ A ∧B ̸= A

A ∩B = {x|x ∈ A ∧ x ∈ B}
∩ = c, a

∀A A ∩ ∅ = ∅

A1 ∩A2... ∩A100 =

100⋂
i=1

Ai

A ∪B = {x|x ∈ A ∨ x ∈ B}
∪ = c, a

A ∪A = A

A ∪ ∅ = A

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

U = universo

complemento di A Ac = {x ∈ U |x /∈ A}
(A ∩B)C = AC ∪BC

(A ∪B)C = AC ∩BC

B\A = {x ∈ B|x /∈ A}
P (A) = {B|B ⊆ A}
AxB = {(a, b)|a ∈ A, b ∈ B}
A1xA2x...xAn = {(a1, a2, ..., an)|a1 ∈ A1, a2 ∈ A2, ..., an ∈ An}
NxNxN = N3

x = a

∅xA = ∅
(A1 ∩A2)xB = (A1xB) ∩ (A2xB)

(A1 ∪A2)xB = (A1xB) ∪ (A2xB)
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3 relazioni

ApB ⊆ AxB
apb = (a, b) ⊆ p
B = A =⇒ relazione definita su A

p è una relazione di equivalenza se definita su A e
1)∀a ∈ A apa
2)apb =⇒ bpa
3)apb ∧ bpc =⇒ apc

se p è una relazione di equivalenza apb si dice a è equivalente a b

sia p una relazione di equivalenza su A,
la classe di equivalenza modulo p di un a ∈ A è l’insieme [a] = {b ∈ A|bpa}

[a] = [b] ⇐⇒ apb
[a] ̸= [b] =⇒ [a] ∩ [b] = ∅
p è una relazione di ordine(parziale) su A se
1)∀a ∈ A apa
2)apb ∧ bpa =⇒ a = b

3)apb ∧ bpc =⇒ apc
parziale significa che non tutti gli elementi sono confrontabili,
se ogni 2 elementi sono confrontabili allora è di ordine totale

4 massimo,minimo,massimale,minimale
in generale una relazione di ordine si indica con ≤

sia ≤ una relazione di ordine su un insieme A. un elemento a ∈ A è detto

1. massimo: se è confrontabile con ogni elemento di A e risulta che y ≤ a ∀y ∈ A

2. massimo: se è confrontabile con ogni elemento di A e risulta che a ≤ y ∀y ∈ A

3. massimale: ∀y ∈ A ∧ y ̸= a∄a ≤ y

4. minimale: ∀y ∈ A ∧ y ̸= a∄y ≤ a

5 funzioni
la relazione p è detta funzione e si indica di solito con f se ∀x ∈ A, ∃!y ∈ B, (x, y) ∈ f
f(x) = y, x ∈ A, y ∈ B, f : A→ B A è dominio B è codominio

immagine di f: Im(f) = {y ∈ B|∃x ∈ A, f(x) = y}
controimmagine di f: f−1(y) = {x ∈ A|f(x) = y}
una funzione f : A→ B è detta iniettiva se ∀x1, x2 ∈ A, x1 ̸= x2, f(x1) ̸= f(x2)
una funzione f : A→ B è detta suriettiva se ∀y ∈ B, ∃x ∈ A, f(x) = y
biettiva = iniettiva ∧ suriettiva
quando f : A→ B è biettiva si può costruire la funzione inversa g : B → A

(g o f)(x) = x ∀x ∈ A

(f o g)(y) = y ∀y ∈ B

siano f : A→ B e g : B → C definiamo la funzione composizione (g o f) : A→ C
come (g o f)(x) = g(f(x))

composizione = not c, a
insieme ordinato = esiste una relazione di ordine totale
campo = ha due operazioni dove ogno elemento ha un opposto e ogni elemento non nullo è

invertibile rispetto alla moltiplicazione
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6 equazioni
di primo grado = lineare

fratte = la x è in qualche frazione, si risolvono con mcm
disequazioni = soluzioni poi parabola
disequazioni fratte = il prodotto/quoziente è positivo se e solo se entrambi sono positivi o negativi

(risolvi N e D e poi tabella li strana)

7 sistemi 

equazione1

equazione2
...
...

(1)

verificato quando tutte vere, roba con rigette

8 radice quadrata
∀x ∈ R, x ≥ 0.y ≥ 0, ∃!y, y2 = x

√
f(x) = g(x)

↕
f(x) ≥ 0
g(x) ≥ 0
f(x) = g2(x)

(campo di esistenza)

3
√

f(x) = g(x)

↕
f(x) = g3(x)

√
f(x) ≥ g(x)

↕
f(x) ≥ 0
g(x) ≥ 0
f(x) ≥ g2(x)

⋃{
f(x) ≥ 0
g(x) < 0

(campo di esistenza)

√
f(x) > g(x)

↕
f(x) ≥ 0
g(x) ≥ 0
f(x) > g2(x)

⋃{
f(x) ≥ 0
g(x) < 0

(campo di esistenza)
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√
f(x) ≤ g(x)

↕
f(x) ≥ 0
g(x) ≥ 0
f(x) ≤ g2(x)

(campo di esistenza)

√
f(x) < g(x)

↕
f(x) ≥ 0
g(x) ≥ 0
f(x) < g2(x)

(campo di esistenza)

3
√

f(x) ≥ g(x)

↕
f(x) ≥ g3(x)

3
√

f(x) ≤ g(x)

↕
f(x) ≤ g3(x)

3
√

f(x) > g(x)

↕
f(x) > g3(x)

3
√

f(x) < g(x)

↕
f(x) < g3(x)

9 logaritmo
∀a, a > 0, a ̸= 1, y > 0, ∃!x, ax = y x = loga y

e = numero di nepero, reale ma non razionale, loge = ln

aloga x = x, x > 0
logaa

x = x, ∀x ∈ R

1. loga(xy) = loga(x) + loga(y)

2. loga(
x
y ) = loga(x)− loga(y)

3. loga(x
b) = b loga(x), b ∈ R

4. logb(x) =
loga(x)
loga(b)

|f(x)| = |g(x)| ↔ f(x) = g(x) ∨ f(x) = −g(x)
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|f(x)| = g(x)

↕{
f(x) ≥ 0
f(x) = g(x)

⋃{
f(x) ≥ 0
−f(x) = g(x)

(campo di esistenza)

notazione: a|b⇔ ∃c, b = c · a
a, b ∈ Z, a, b ̸= 0, ∃MCD(a, b) = d, d = ax+ by ← identità di bezout
teorema fondamentale dell’aritmetica:

∀n ∈ N, n ̸= 0, 1∃P = {(p0,m0), (p1,m1)...(pn,mn)},
∏

(p,m)∈P

pm = n

∀z ∈ Z, z ̸= −1, 0, 1∃P = {(p0,m0), (p1,m1)...(pn,mn)},
∏

(p,m)∈P

pm = z
=⇒

=⇒ D = {xn|}

(usando la definizione delle coppie di Kuratowski)

p = (x, y) = {{x}, {x, y}} =⇒

{⋂
p =

⋂
{{x}, {x, y}} = {x} ∩ {x, y} = {x}⋃

p =
⋃
{{x}, {x, y}} = {x} ∪ {x, y} = {x, y}

=⇒

=⇒

{
π1(p) =

⋃⋂
p =

⋃
{x} = x

π2(p) =
⋃
{a ∈

⋃
p |
⋃
p ̸=

⋂
p→ a /∈

⋂
p} =

=
⋃
{a ∈ {x, y} | {x, y} ̸= {x} → a /∈ {x}} =

⋃
{y} = y

MCD(a, b) =
∏
{xn|x = π1(P1) ∧ x = π1(P2), n = min{π2(P1), π2(P2)}, P1 ⊆ Pa, P2 ⊆ Pb}

MCM(a, b) =
∏
{xn|x = π1(P1) ∨ x = π1(P2),

n = max{π2(m)|m ⊆ {P |P = P1, x = π1(P1)}∪
{P |P = P2, x = π1(P1)}}, P1 ⊆ Pa, P2 ⊆ Pb}

MCD(a, b) ·MCM(a, b) = a · b

mcd :: Int -> Int -> Int
mcd a b

| r1 == 0 = b
| otherwise = mcd b r1

where r1 = a `mod` b

se MCD(a,b) = 1 si dice che a, b sono coprimi tra loro

equazione diofantee 5x+ 3y = 16, determinare tutte le soluzioni (x, y) intere dell’equazione

basta risolvere 5u+3v = 1, infatti dopo multiplico per 16, 5(16u) + 3(16v) = 16
({

x = 16U
y = 16V

)
5u+3v è un’identità di bezout, si può realizzare? si, perché (5, 3) = 1

5 = 3 · 1+ 2, r1 = 2
3 = 2 · 1+ 1, r2 = 1
2 = 1 · 2+ 0, stop

MCD(5, 3) = r2 = 1
bezout:

1 = 3− 2 · 1
= 3− (5− 3 · 1) · 1
= 3− 5 · 1+ 3 · 1
= 3 · 2− 5 · 1

u = −1
v = 2

una soluzione di 5x+3y=16 è
{
x = 16u = −16
y = 16v = 32

tutte le soluzioni sono (x− 3h, y + 5h), in quanto 5(x− 3h) + 3(y + 5h) = 5x− 15+ 3y + 15 =
5x+ 3y = 16
quindi le soluzioni sono (x, y) = (−16− 3h, 32+ 5h)∀h ∈ Z

ax+by=c ha solozioni intere ⇐⇒ (a, b)|c
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su Z definiamo una relazione apnb ⇐⇒ a ∼= b mod n
le classi di equivalenza sono [a]n = {b ∈ Z|apnn} l’insieme quoziente è l’insieme delle classi di
equivalenza, lo si indica con Zn = {[m]n|∀m ∈ N, 0 ≤ m < n}

congruente in Z a è congruente a b modulo n se n ∈ N, n ≥ 1, a, b ∈ Z, a mod n = b mod n =⇒
b− a = kn, n|(a− b)

la relazione di congruenza mod n è una relazione di equivalenza qualsiasi sia n ∈ N0

riflessiva : ∀a ∈ Z, a ∼= a mod n(n|(a− a) = n|0)
simmetrica : ∀a, b ∈ Z, a ∼= b mod n =⇒ b ∼= a mod n(n|(b− a) = n| − (a− b))

transitiva :
∀a, b, c ∈ Z, a ∼= b mod n ∧ b ∼= c mod n =⇒ a ∼= c mod n

(n|(b− a) ∧ n(c− b) =⇒ n|(b− a+ c− b) = n|(c− a)

classi di equivalenza quante sono? quante n
[0]n, [1]n, [2]n, ..., [n− 1]n
[0]n = {a ∈ Z|a ∼= 0 mod n}
∀a, b ∈ Z, [a]n + [b]n = [a+ b]n
∀a, b ∈ Z, [a]n · [b]n = [a · b]n
[a] invertibile in Zn ⇐⇒ ∃[x], [a] · [x] = [1] ⇐⇒ [a · x] = [1] ⇐⇒ ax ∼= 1 mod n ⇐⇒

n|(ax− 1) ⇐⇒ ax− 1 = kn, k ∈ Z ⇐⇒ ax− kn = 1, k ∈ Z ⇐⇒ MCD(a, n) = 1
Z→ Z

nZ = {[m]n|m ∈ N, 0 ≤ m < n}
ax ∼= b mod n, d = (a.n) ammette una soluzione ⇐⇒ d|b, in caso x0 è una soluzione, tutte le

altre sono x = x0 +
n
d k, k ∈ Z

siano n1, ..., nr ∈ N > 0
siano b1, ..., br ∈ Z
allora

1. il sistema


x ∼= b1 mod n1
...
x ∼= br mod nr

2. tutte le soluzioni sono della forma c+ kn1 · n2 · ... · nr, cioè la soluzione [c]n1·...·nr

algoritmo: risolvo indipendetemente le congruenze, per i=1,...,r

1. Niyi = 1 mod ni, Ni =
r∏

j=1,j ̸=i

nj

esempio:
x ∼= 3mod8, b1 = 3, n1 = 8, N1y1 = 1modn1 ⇒ 5 · 21y1 ∼= 1mod8⇒ y1 ∼= tot1mod8
x ∼= −1mod5, b2 = −1, n2 = 5, N2y2 = 1modn2 ⇒ 8 · 21y2 ∼= 1mod5⇒ y2 ∼= tot2mod5
x ∼= 27mod21, b3 = 27, n3 = 21, N3y3 = 1modn3 ⇒ 8 · 5y3 ∼= 1mod21⇒ y3 ∼= tot3mod21

2. pongo c =
r∑

i=1
biyiNi

teorema cinese del resto generalizzato il sistema


x = b1 mod n1
...
x = br mod nr

ha soluzione ⇐⇒

∀i, j ≤ r,MCD(n1, nj)|(b1 − bj), una soluzione c e le altre nella forma c+ kMCM(n1, ..., nr)

funzione di eulero se A è un insieme finito, il simbolo #A indica il numeri di elementi di A
∀n ∈ N, n ≥ 1, ϕ(n) = #{a ∈ Z|0 < a < n, (a, n) = 1} = #{classi invertibili di Zn}
∀n ∈ N, n ≥ 1, n primo, (a, n) = 1 =⇒ aϕ(n) ∼= 1 mod n

eulero:: Int -> Int
eulero n

| isPrimo n = n-1
| isPrimo (h `sqrt` p) = (p `pow` h) - (p `pow` (h-1))
| otherwise = map eulero $ toFattoriPrimi n
where h >= 1
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piccolo teorema di fermat
a ∈ Z, p > 0, p primo =⇒ ap ∼= a mod p
(a, p) = 1 =⇒ ap−1 ∼= 1 mod p

10 basi
∀n ≥ 2, ∀a ∈ N, a ≥ 0, ∃!An = {B ∈ R2|#B <∞,

∏
r=π1(p),n=π2(p),p⊆B

rnh = a}

basechange :: Int -> Int -> [Int]
basechange a n = _basechange a n n
_basechange :: Int -> Int -> Int -> [Int]
_basechange a n e

| e == 0 = [a `mod` n]
| otherwise = a `mod` n : _basechange (a `div` n) n (e - 1)

11 trigonometria

−2 −1 0 1 2
−2

−1

0

1

2

sinx

cosx

P= (cosx,
sinx)

x

y

circonferenza raggio 1

cos2 x+ sin2 x = 1 periodiche in periodo 2π

sin(x+ 2π) = sinx

cos(x+ 2π) = cosx

sin−x = − sinx
cos−x = cosx

sin(π − x) = sinx

cos(π − x) = − cosx

sin(π + x) = − sinx

cos(π + x) = − cosx

sin(2x) = 2 sinx cosx

cos(2x) = cos2 x− sin2 x

sin
(x
2

)
= ±

√
1− cosx

2

cos
(x
2

)
= ±

√
1+ cosx

2

tanx = sin x
cos x

tan π
4 = 1, tan π

6 =
√
3
3 , tan π

3 =
√
3

periodica di periodo π

tan(x+ π) = tanx

cot = cotan = cos x
sin x

180◦ = π
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sin 0 = 0, cos 0 = 1, tan 0 = 0

sin
π

2
= 1, cos

π

2
= 0, tan

π

2
= ∅

sinπ = 0, cosπ = −1, tanπ = 0

sin
3π
2

= −1, cos 3π
2

= 0, tan
3π
2

= ∅

cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cosx cos y + sinx sin y

sin(x+ y) = sinx cos y + cosx sin y

sin(x− y) = sinx cos y − cosx sin y

−6.28−4.71−3.14−1.57 0 1.57 3.14 4.71 6.28

−1
0

1

x

y

funzioni trigonometriche

sinx
cosx
tanx
cotx

DISEQUAZIONI:

cosx >

√
2
2

2kπ − π

4
< x <

π

4
+ 2kπ

12 triangoli rettangoli

a = c · cosα

b = c · sinα
c

α

triangolo retangolo

13 immaginari
Re(x) = parte reale Im(y) = parte immaginaria

se z = x+ iy il coniugato è z = x− iy
due complessi sono uguali se hanno stesso modulo e stesso argomento a meno di multipli di 2π{

x1 = x2

y1 = y2 + 2kπ
operazioni sui complessi:

somma (x+ iy) + (x′ + iy′) = x+ x′ + i(y + y′)

prodotto (x+ iy) · (x′ + iy′) = xx′ + ixy′ + iyx′ + i2yy′ = xx′ − yy′ + i(xy′ + yx′)

modulo di z = x+ iy è |z| =
√
x2 + y2

|z|2 = zz

z1 + z2 = z1 + z2

z1 · z2 = z1 · z2(
1
z

)
=

1
z

z = z
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|z| ≥ 0
z = 0 ⇐⇒ |z| = 0
|z1 · z2| = |z1| · |z2|
|z| = |z|
|z1 + z2| ≤ |z1|+ |z2|

x

y

z = x+ iy

p
y

ϕ

forma trigonometrica

p = |z|
ϕ = angolo formato dal segmento e asse x{
cosϕ = x

p
sinϕ = y

p
z = x+ iy = p cosϕ+ i(p sinϕ) = p(cosϕ+ i sinϕ)
p = modulo di z
ϕ = argomento di z
altra formula per ϕ

ϕ =



arctan y
x se x > 0 e y qualsiasi

arctan y
x + π se x < 0 e y ≥ 0

arctan y
x + π se x < 0 e y < 0

π
2 se x = 0 e y > 0
−π

2 se x = 0 e y < 0

, ϕ ∈ (−π, π]

DE MOIVRE

z1 = p1(cosϕ1 + i sinϕ1)

z2 = p2(cosϕ2 + i sinϕ2)

z1 · z2 = p1p2(cosϕ1i sinϕ1)(cosϕ2i sinϕ2) =
= p1p2(cosϕ1 cosϕ2 + i cosϕ1 sinϕ2 + i sinϕ1 cosϕ2 + i2 sinϕ1 sinϕ2)

= p1p2(cosϕ1 cosϕ2 − sinϕ1 sinϕ2 + i(cosϕ1 sinϕ2 + sinϕ1 cosϕ2))

= p1p2(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))

generalizzando

z1 · z2 · ... · zn = p1p2..pn(cos(ϕ1 + ϕ2 + ...+ ϕn) + i sin(ϕ1 + ϕ2 + ...+ ϕn))

zn = pn(cos(n · ϕ) + i sin(n · ϕ))

DE MOIVRE per i quozienti

z1 = p1(cosϕ1 + i sinϕ1)

z2 = p2(cosϕ2 + i sinϕ2)
z1
z2

=
p1
p2

(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2))

radici n-esime
n
√
w = z, zn = w

sia w = r(cosϕ+ i sinϕ) ̸= 0
w ammette esattamente n radici n-esime
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queste sono

k = {x|x ≥ 0 ∧ x < n/x ∈ N}

zk = r
1
n (cosϕk + i sinϕk)

ϕk =
ϕ+ 2kπ

n

C è algebricamente chiuso, ogni equazione polinomiale in C: anzn + an−1z
n−1 + ...+ a1z + a0 =

0 a0, a1, ..., an ∈ C
ha esattamente n radici (=soluzioni) contate con molteplicità
R non è algebricamente chuso, infatti x2 + 1 = 0 non ha soluzioni in R
MOLTIPLICAZIONE PER i
z = p(cosϕ+ i sinϕ)
vogliamo capire modulo e argomento di iz
|iz| = |i| · |z| = 1 · p = p
argomenti di iz

iz = pi(cosϕ+ i sinϕ) =

= p(i cosϕ+ i2 sinϕ) =

= p(− sinϕ+ i cosϕ) =

= p
(
cos
(
ϕ+

π

2

)
+ i sin

(
ϕ+

π

2

))

(dato che cos
(
ϕ
π

2

)
= − sinϕ

sin
(
ϕ
π

2

)
= cosϕ)

l’argomento di iz è ϕ+ π
2

14 relazione di equivalenza
relazioni binarie

x = {a, b, c, d}
x = N
x = C
R ∈ x2 = {(x, y)|x, y ∈ X}
R = {(a, a)}|{(b, c), (a, c)}...

relazione di eguaglianza

1.riflessive ∀x ∈ X, (x, x) ∈ R|R(x, x)|xRx

2.simmetriche ∀x, y ∈ X, (x, y) ∈ R =⇒ (y, x) ∈ R

3.transitiva ∀x, y, z ∈ X, (x, y) ∈ R ∧ (y, z) ∈ R =⇒ (x, z) ∈ R

principio di induzione (Ia forma) n0 ∈ N, P (n0) =⇒ ∀n ≥ n0, n ∈ N, P (n+ 1)
principio di induzione (IIa forma) n0, n, k ∈ N, P (n0)∧∀k, n > k > n0 =⇒ P (n+ 1) =⇒ ∀n ≥

n0, P (n)

15 gruppi
un gruppo (G, ∗) è un insieme G dotato di una operazione binaria

∗ :GxG→ G

(a, b)→ a ∗ b

che verifica le seguenti proprietà

(a) * è associativa ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)

(b) ∃e ∈ G detto elemento neutro rispetto all’operazione *: ∀a ∈ G, e ∗ a = a = a ∗ e = a

(c) ∀a ∈ G, ∃a−1 ∈ G detto elemento inverso tale che a ∗ a−1 = e = a−1 ∗ a
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se inoltre vale che ∀a, b ∈ G, a ∗ b = b ∗ a, si diche che (G,*) è un gruppo abeliano
∃!e ∈ (G, ∗), ∀a ∈ G, a ∗ e = a = e ∗ a
∃!a−1 ∈ (G, ∗), ∀a ∈ G, a ∗ a−1 = e = a−1 ∗ a
∀a, b ∈ (G, ∗), (a · b)−1 = b−1 · a−1

∀a ∈ G,
(
a−1

)−1
= a

∀g ∈ (G, ∗), ∀i ∈ Z

gi =


g ∗ g ∗ g ∗ ... ∗ g
e

g−1 ∗ g−1 ∗ ... ∗ g−1

i > 0
i = 0
i < 0

l’ordine r di g ∈ G è il più piccolo intero positivo r tale che gr = e. È indicato con o(g). Se ∄r
si dice che g ha ordine infinito

un gruppo è detto finito di ordine R se G ha un numero finito di elementi uguale a R
si indica con |G| il numero di elementi di G (che è anche il suo ordine se è finito)

Lagrange ∀g ∈ G, |G| <∞ =⇒ o(g)||G|
un gruppo G è detto ciclico se ∃g ∈ G, ∀a ∈ G, ∃i ∈ Z, ai = g, g0 = e =⇒ G =< g >

1. |G| = 1 =⇒ G = {e}

2. |G| = 2, G = {a, a2 = e} =< a >, è un gruppo ciclico
* e a
e e a
a a e

3. |G| = 3, G = {g, g2, g3 = e} =< g >, ciclico
∗ e g g2

e e g g2

g g g2 e
g2 g2 e g

4. |G| = 4, due strutture distinte di gruppo:

(a) il gruppo ciclico: G = {g, g2, g3, e = g4} =< g >
∗ e g g2 g3

e e g g2 g3

g g g2 g3 e
g2 g2 g3 e g
g3 g3 e g g2

(b) il gruppo di klein: G = {e, a, b, c = a ∗ b = b ∗ a}
∗ e a b c
e e a b c
a a b c e
b b c e a
c c e a e

5. |G| = 5, G = {g, g2, g3, g4, e = g5} =< g >, ciclico

6. |G| = 6 molte strutture

se |G| = p primo allora G è ciclico
se |G| ≤ 5 allora G è abeliano. ci sono gruppi non abeliani a partire da ordine 6
ogni gruppo ciclico è abeliano

gruppi di permutazione /gruppo simmetrico Sn

{1, 2, 3, 4, ..., n} = x→ {1, 2, 3, 4, ..., n}
funzioni bigettive
Sn = {funzioni bigettive da {1, ..., n} → {1, ..., n}}
|Sn| = n!
operazione: composizione fog
x

g−→ x
f−→ x

x− g(x)− f(g(x)) := fog(x)
neutro: idog(x) = g(x)
inverso: fof−1 = f−1of = id (f(x) = y, f−1(y) = x)
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Permutazioni ”facili”: scambi:
(
1 2 3 4 5
2 1 3 4 5

)
: (1 2): stiamo scambando solo 1 con 2

Cicli:
(
1 2 3 4 5
2 3 1 4 5

)
: (1 2 3)(4)(5) = (2 3 1)(5)(4) = (4)(5)(3 1 2)

(a b)2 = (a b)o(a b) = id
σ : (a1...an)

anelli strutture algebriche con 2 operazioni
un anello (R,+, ·) è un insieme R dotato di due operazioni binarie:

+ : RxR→ R

· : RxR→ R

tali che

1. (a) + è associativa: (a+ b) + c = a+ (b+ c)

(b) esiste l’elemento neutro 0 ∈ R rispetto alla +: ∀a ∈ R, a+ 0 = a = 0+ a

(c) ∀a ∈ R, ∃ − a ∈ R detto elemento opposto tale che: a+ (−a) = 0 = (−a) + a

(d) + è commutativa: ∀a, b ∈ R, a+ b = b+ a

2. · è associativa: ∀a, b, c ∈ R, a · (b · c) = (a · b) · c

3. valgono le leggi distributive:

a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

(R, +) è un gruppo abeliano
se vale che · è commutativo si dice che (R,+, ·) è commutativo
se vale che esiste l’elemento neutro 1 ∈ R rispetto al prodotto, si dice che l’anello è unitario
un campo è un anello commutativo unitario in cui ogni elemento diverso da 0 è invertibile

anello dei polinomi a coefficienti in A : A[x]
sia A = (A,+, ·) un anello
{0} ∪ {

n∑
i=0

aix
i|n ∈ N, ai ∈ A}

grado di un polinomio:
grado(0) = −1

grado(
n∑

i=0

a1x
i = max{i|a1 ̸= 0}

monomio: aixi

operazioni: +: è la classica somma termine a termine
n∑

i=0
aix

i +
n∑

i=0
bix

i =
n∑

i=0
(ai + bi)x

i

prodotti: stesso discorso
n∑

i=0
aix

i ·
n∑

i=0
bix

i =
n∑

i=0
(ai · bi)xi

teorema ruffini: se P (x) ∈ A[x], A campo, a ∈ A,P (a) = 0 (a è radice di P(x)) ⇐⇒ (x−a)|P (x)

matrice fissiamo A anello, una matrice di tipo (m,n), con m,n ∈ N,m ≥ 1 ≤ n è una tabella M
di mxn elementi di A

r1
r1
...
rm

 =
(
c1|...|cn

)
=

 a11 a12 ... a1n
...
... ai,j

am1 am2 ... amn

 , aij , i = riga, j = colonna

M = (ai,j)i≤m,j≤n

ai,j sono i coefficienti/entrate di M
(m,n) è la dimensione della matrice, se M è quadrata (cioè m = n) si dice anche che è quadrata

di dim. n
Mmxn(A) = Mm,n(A) :=l’insieme delle matrici di dimensione (m,n) a coefficienti in A
somma: m1 ̸= m2 ∨ n1 ̸= n2 non si somma

m1 == m2 ∧ n1 == n2,

 a11 ... a1n
... . . . ...

am1 ... amn

+

 b11 ... b1n
... . . . ...

bm1 ... bmn

 =

 a11 + b11 ... a1n + b1n
... . . . ...

am1 + bm1 ... amn + bmn


1. A+B = B +A
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2. A+ (B + C) = (A+B) + C

3. elemento neutro 0 =

0 ... 0
... . . .

...
0 ... 0



4. opposto di A è −A =

 −a11...− a1n
... . . .

...
−am1...− amn


operazione di trasposta: ”rifletti” A = (aij), A

T = (atji), a = at(
AT
)T

= A
l’operazione di transposizione è idempotente
A ∈M2x3(K), AT ∈M3x2(K)
A ∈Mnxm(K), AT ∈Mmxn(K)
A è simmetrica se AT = A
prodotto esterno: ∀k ∈ K, ∀A ∈Mnxm(K), A = (ai,j), k ·A = (kai,j)

prodotto interno: v = (a1...an), w =

b1
...
bn

, il prodotto vettore v · w =
n∑

i=1
aibi ∈ K

prodotto tra matrici: A ∈Mmxn(K), A ∈Mnxh(K), C ∈Mmxh, ci,j =
n∑

r=1
airbrj

1. (A+B) · C = AC +BC
A · (C +D) = AC +AD

2. ∀k ∈ KA(kB) = (kA)B = kAB

3. (AB)C = A(BC) := ABC

4. elemento neutro nel caso quadrato: In =


1 0 ... 0

0
. . . . . . ...

... . . . . . .
...

0 ... ... 1


5. (AB)T = BTAT

6. (A+B)T = AT +BT

matrici invertibili M(R, n) = {matrici quadrate nxn a coefficienti in R}
(M(R, n),+, ·) anello non commutativo, è unitario, esiste l’elemento neutro rispetto al prodotto

che è la matrice identità I =

1 0
. . .

0 1

 ∈M(R, n), ∀A ∈M(R), A · I = A = I ·A

una matrice quadrata NxN è invertibile se esiste una matrice A−1 quadrata NxN tale che
A ·A−1 = I e A−1 ·A = I

non tutte le matrici non nulle sono invertibili
matrici non quadrate non sono invertibili
data A voglio trovare B tale che A ·B = I.
B = (b1|b2|...|bn)

A ·B = I ⇐⇒ A · b1 =


1
0
...
0

 , A · b2 =


0
1
...
0

 , ..., A · bn =


0
0
...
1


⇐⇒ (A

...I) dall’alto e dal basso−−−−−−−−−−−−→
gauss-jordan

(I
...B)

con B = A−1 matrice inversa
A di tipo NxN invertibile ⇐⇒ rk(A) = N (ossia è massimale)

1. (AB)−1 = B−1A−1

2. (A−1)−1 = A

3. (AT )−1 = (A−1)T
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determinanti A =


a11 a12 ... a1n
a21 a22 ... a2n
...

... . . . ...
an1 an2 ... ann


il determinante di A è lo scalare det(A) = |A| =

∑
σ∈Sn

sgn(σ)
n∏

i=1
iσ(i)

sgn(x) =

{
+1 se x è pari
−1 se x è dispari

il determinante per 3x3 (regola di sarrus) A =

a b c
d e f
g h c

 , det(A) = aei+dhc+bfg−ceg−hfa−dbi

1. se B si ottiene da A scambiando due righe o colonne, allora det(B) = −det(A)

2. se A ha due righe o colonne uguali, il determinante è zero

3. se A ha una riga o colonna di zeri, il determinante è zero

4. se B si ottiene da A moltiplicando una riga per k ∈ R allora det(B) = k · det(A)

5. se B si ottiene da A sommano ad una riga di A un multiplo di un’altra riga, allora det(B) =
det(A)

6. matrice triangolare superiori (∀i < n, ∀j > i, aji = 0) det(A) = a11a22...ann

A nxn è invertibile ⇐⇒ rk(A) = n ⇐⇒ det(A) ̸= 0

regola di laplace A = M(R, N)
indichiamo con Ai,j la sottomatrice di A ottenuta cancellando la i-esima riga e la j-esima colonna,

allora fissato i ∈ {1, ..., N} si ha det(A) =
n∑

j=1
(−1)i+jaijdet(Ai,j)

binet

1. det(A ·B) = det(A) · det(B)

2. det(Ak) = [det(A)]k

3. det(A−1) = 1
det(A)

autovettore e autovalore A ∈ M(K, NxN), v ∈ KN , v ̸= 0, λ ∈ K, A · v = λv =⇒ λ è un
autovalore di A e v è un autovettore relativo all’autovalore λ

polinomio caratteristico pA(t) = det(A− tI) ∈ K[t]
gli zeri di pA(t) in K sono gli autovalori di A, e viceversa
la moleplicità algebrica di un autovalore è la molteplicità dello zero come soluzione del polinomio

MA(λ) = maxm(x− a)m|P (x)
dato λ un autovalore di A definiamo l’autospazio relativo all’autovalore λ:

Vλ =

v =


v1
v2
...
vn

 ∈ KN |Av = λv

 =
{
v ∈ KN |Av − λv = 0

}
=
{
v ∈ KN |(A− λI)v = 0

}
la molteplicità geometrica dell’autovalore λ è la dimensione di Vλ. si indica con MG(λ) =

dim(Vλ), dim(Vλ) ≥ 1 ∀λ autovalore
1 ≤ mg(a) ≤ ma(a)
n = ordine matrice,

∑
a autovalori

ma(a) ̸= n =⇒ matrice non diagonalizzabile

diagonalizzazione le matrici + semplici sono quelle diagonali


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4


non tutte le matrici sono diagonali, però in realtà la magior parte sono diagonalizzabili, cioè

ammettono una forma diagonale
due matrici A,B ∈M(K, NxN) sono simili se esiste C matrice invertibile tale che B = C−1 ·A ·C
una matrice è diagonalizzabile se è simile ad una matrice diagonale
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se A è diagonalizzabile la sua forma diagonale è composta dagli autovalori di A e inoltre la
matrice diagonalizzante C è composta da una base di autovettori

MA(λ) = 1 =⇒ MA(λ) = MG(λ)
A diagonalizzabile ⇐⇒ ∀λ autovalore,MA(λ) = MG(λ)

16 sistemi di equazioni lienari
con grado max 1

equazioni lineare omogenea:
[
a1x1 + ...+ anxn = 0
3x1 − x2 + 5x3 = 0

)

equazione lineare non omogenea:
a1x1 + ...+ anxn = b1

3x1 − x2 + 5x3 = 7

)

sistema di equazioni lineari

a11x1 + ...+ a1nxn = b1
a21x1 + ...+ a2nxn = b2

...
am1x1 + ...+ amnxn = bm

sistema di m equazioni in n incognite, gli ai,j sono coefficienti, (b1...bm) vettore dei termini noti.
se b1 = ... = bm = 0 il sistema è omogeneo

una soluzione del sistema è una qualche (x1, ..., xn) che risolve tutte le equazioni

cosa centrano le matrici?

a11x1 + ...+ a1nxn = b1
a21x1 + ...+ a2nxn = b2

...
am1x1 + ...+ amnxn = bm

,

(a11, ..., a1n)

x1
...
xn


(a21, ..., a2n)

x1
...
xn


...

(am1, ..., amn)

x1
...
xn



,

 a11...a1n
... . . . ...

am1...amn


x1

...
xn

 =

 a11x1 + ...+ a1nxn

...
am1x1 + ...+ amnxn

 =

b1
...
bn

← (vettore dei termini noti)

↑
vettore indeterminate

[A|b]← queste sono quelle da manipolare

processo do gauss-jordan: ridurre il sistema ad un sistema a gradini equivalente
a′11x1 + a′12x2 + .........+ a′1nxn = b′1

a′22x2 + .........+ a′2nxn = b′2
. . . ...
a′mmxm + ...+ a′mnxn = b′m

sono sistemi equivalenti, cioè hanno le stesse soluzioni. il sistema a gradini è facile da risolvere,
perché si risolve per sostituzione a partire dall’ultima equazione.

si ottengono sistemi equivalenti se opero con le seguenti operazioni, dette elementari:

1. scambiare di posto due equazioni

2. moltiplicare una equazione per uno scalare non nullo

3. sostituire una equazione con la soma di se stessa e un multipo scalare di un’alatra equazione

il rango di una matrica A è il numero di pivot nella sua forma a gradini, si indica con rg(A)
oppure con rk(A)

un sistema lineare è compatibile ⇐⇒ rg(A
...b) = rg(A), in tal caso, il sistema possiede ∞n−r

soluzioni dove n è il numero di incognite, r = rg(A)

17 algebra lineare
spazio vettoriale (ancora un’altra struttura algebrica)
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uno spazio vettoriale V su un campo K è un insieme V con due operazioni:

+ : V xV → V (v, w)→ v + w

· : KxV → V (c, v)→ c · V

1. (V,+) è un gruppo abeliano, in pratica: esiste un elemento neutro, si indica con 0 e detto
vettore nullo e esiste anche elemento inverso di W detto -W: W + (−W ) = 0

2. ∀c ∈ K, ∀W,U ∈ V, c(W + U) = cW + cU

3. ∀c1, c2 ∈ K, ∀W ∈ V, (c1 + c2)W = c1W + c2W

4. ∀c1, c2 ∈ K, ∀W ∈ V, (c1c2)W = c1(c2W )

5. ∀W ∈ V, 1 ·W = W

6. il vettore nullo 0 è unico

7. ∀W ∈ V, 0 ·W = 0

8. ∀k ∈ K, k · 0 = 0

un sottoinsieme non vuotoW di uno spazio vettoriale V sul campoK è detto sottospazio vettoriale
di V se:

1. W è chiuso rispetto alla somma: ∀w1, w2 ∈W =⇒ w1 + w2 ∈W

2. W è chiuso rispetto alla moltiplicazione per uno scalare: ∀c ∈ K, w ∈W =⇒ c · w ∈W

un vettore v ∈ V è una combinazione lineare dei vettori v1, v2, ..., vm ∈ V se c1v1 + c2v2 + ... +
cmvm = v dove c1...cm sono scalari

diciamo che i vettori v1...vm ∈ V generano V se ogni vettore v ∈ V è una combinazione lineare
di v1...vm, si scrive V =< v1...vm >

dipendenza lineare, v1...vm ∈ V sono vettori linearmente dipendenti se esistono scalari c1...cm ∈ R
non tutti nulli tali che c1v1...cmvm = 0. altrimenti si dicono linermente indipendenti

un vettore singolo v ∈ V è linearmente indipendente ⇐⇒ v ̸= 0
una base di V è un insieme di vettori {v1...vn} che genera V e sono linearmente indipendenti

equicardinalità delle basi le basi di uno spazio vettoriale hanno lo stesso numero di elementi.
questo numero è detto dimensione di V, si indica con dim(V )

se dim(V ) = N

1. N vettori che generano V sono anche linearmente indipendenti

2. N vettori lin. indip. di V allora generano V

N vettori v1...vn ∈ RN formano una base ⇐⇒ rk(v1, v2...vn) = N ⇐⇒ det(v1, v2...vn) ̸= 0

estrazione di una base dati vettori di V che generano esiste un loro sottoinsieme formante una
base di V (basta rimuovere i vettori dipendenti)

complemento ad una base dati vettori di V linearmente indipendenti, possiamo aggiungere altri
vettori in modo da ottenere una basei di V

sottospazi un sottoinsieme non vuoto W di uno spazio vettorieale V è detto sottospazio se:

1. W è chiuso rispetto alla somma (∀w1, w2 ∈W =⇒ w1 + w2 ∈W )

2. W è chiuso rispetto alla moltiplicazione per uno scalare (∀w ∈W, ∀c ∈ R =⇒ c · w ∈W )

se W ⊆ V sottospazio, allora dim(W ) ≤ dim(V ), inoltre se dim(W ) = dim(V ) allora W = V

sottospazi generati da vettori dati v1, v2, ..., vm ∈ V lo spazio generato da questi vettori è
definito come < v1, v2...vm >= {c1v1 + c2v2 + ...+ cmbm, c1...cm variano in R}

< v1, v2, ..., vm >⊆ V è un sottospazio (la somma di combinazioni lineari è di nuovo una combi-
nazione lineare)

sottospazio somma e intersezione
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somma di sottospazio
siano S ⊆ V e T ⊆ V due sottospazi di V. dim(S) = M, dim(T ) = N , definiamo S + T =

{v+w|v ∈ S,w ∈ T} ⊆ V in realtà è un sotospazio. come si trova una base di S+T? si parte da BS =
{v1, ..., vm} base di S e BT = {w1, ..., wn} base di T allora S+T è generato da v1, ..., vm, w1, ..., wn

dai quali estraggo una base.
dim(S + T ) ≤ dim(S) + dim(T )

intersezione
S, T sottospazi di V , S ∩ T = {v ∈ V |v ∈ S, v ∈ T} ⊆ V è un sottospazio

formula di grassman
dim(S)+dim(T ) = dim(S+T )+dim(S ∩T ) =⇒ dim(S)+dim(T )+dim(S+T ) = dim(S ∩T )
S, T ⊆ V sottospazi, se S + T = V e S ∩ T = {0} si dice che V = S ⊕ T è somma diretta di S e

T. ogni v ∈ V si scrive in modo unico come v = v1 + v2) con v1 ∈ S e v2 ∈ T

applicazioni lineare /omomorfismi tra spazi vettoriali
siano V,W due spazi vettoriali in K, un’applicazione lineare tra V e W è f : V →W, ∀v ∈ V, ∀k ∈

K, f(
n∑

i=1
kivi) =

n∑
i=1

kif(vi)

ker(f) = {v ∈ V |f(v) = 0} ⊆ V
ker(f) è un sottospazio vettoriale di V
ker = kernel
Im(f) = {w ∈W |∃v ∈ V f(v) = w} ⊆W
Im(f) è un sottospazio vettoriale di W
sia f : V → W applicazione lineare, sia dim(V ) = n allora n = dim(V ) = dim(ker(f)) +

dim(Im(f))
un’applicazione lineare si dice

1. iniettiva quando la funzione è iniettiva

2. surgettiva quando la funzione è surgettiva

3. isomorfismo, quando è entrambe

siano V,W spazi vettoriali su K, sia B = {v1, ..., vn} base di V, siano w1, ..., wn vettori qualsiasi

di W , allora ∃!f : V →W applicazione lineare


f(v1) = w1

...
f(vn) = wn

coordinate V spazio vettoriale su R (in generale su un campo qualsiasi K), fissiamo una base
B = {v1, ..., vn} do V quindi dim(V ) = N

ogni vettore v ∈ V si può scrivere come combinazione lineare dei vettori della base in modo
unico, v = x1v1 + ....+ xnvn con x1, ..., xn ∈ R univocamene

il vettore

x1
...
xn

 ∈ Rn è detto vettore delle coordinate. si indica con [v]B oppure con x

applicazione delle coordinate V con vase B, dim(V ) = n definiamo l’applicazione delle

coordinate (rispetto a B) ϕB :
V → RN

v → [v]B
ϕB è lineare ed un isomorfismo, quindi lavorare in V è come lavorare in RN , che è piú semplice
ogni spazio vettoriale V di dimensione N è isomorfo a RN (due spazi vettoriali V e W della stessa

dimensione, diciamo N , sono isomorfi, perché entrambi isomorfi a RN )

matrice del cambiamento di coordinate V fissiamo due basi: B e e, B = {v1, v2, ..., vn},
e = {w1, ..., wn}

in particolare dim(V ) = n, ogni vettore v ∈ V ammette ue vettori di coordinate: [v]B e [v]e

matrice del cambiamento di coordinate dalla base B alla base e eMB =

 | | |
[v1]e [v2]e...[vn]e
| | |


∀v ∈ V, [v]e = eMB · [v]B
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matrice rappresentative f : V → W applicazione lineare, B = {v1, ..., vn} base di V , e =
{w1, ..., wm} base di W

la matrice di rappresentazione di f rispetto alle basi B e in dominio e e in codominio

eMB(f) =

 | | |
[f(v1)]e [f(v2)]e...[f(vn)]e

| | |


eMB(f) = transforma le B-coordinate di v nelle e-coordinate di f(v)
∀v ∈ V, [f(v)]e = eMB(f) · [v]B

endomorfismo se W = V , f : V → V è detto endomorfismo su V
siano B e e due basi di V abbiamo due matrici di rappresentazione di f : BMB(f) e eMe(f),

eMe(f) = eMB · BMB(f) · BMe

eMB = BM
−1
e

eMe(f) = BM
−1
e · BMB(f) · BMe (formula di cambiamento delle matrici rappresentanti degli

endomorfismi)
le matrici rappresentanti di un endomorfismo rispetto a basi diverse sono simili
diciamo che un endomorfismo f : V → V è diagonalizzabile se siste una base B di V tale che la

matrice rappresentante BMB(f) è diagonale
f : V → V endomorfismo e sia A una matrice rappresentante di f =⇒ det(A) ̸= 0 ⇐⇒ f

suriettivo ⇐⇒ f iniettivo

rango il rango di una matrice A è anche uguale al massimo ordine di un minore non nullo, un
minore di ordine k è il determinante di una sottomatrice formata da k righe e k colonne1 0 0

0 1 1
0 2 2

 ,

∣∣∣∣1 0
0 1

∣∣∣∣ ̸= 0,

∣∣∣∣∣∣
1 0 0
0 1 1
0 2 2

∣∣∣∣∣∣ = 0, max ordine minore non nullo è 2
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